The Mole Concept

Content Objective:

I can calculate percent composition.
Criteria for Success:
I can determine the molar mass of an individual element in a compound.
I can determine the molar mass of an entire compound.
I can use the molar mass of an individual element in a compound and the molar mass of an entire compound to calculate the percentage composition of a given chemical compound.

Notes

Percent Composition
A. \qquad is the percent by mass of each element in a compound.

1. According to the law of \qquad , the molar ratio of elements in a specific compound is constant, regardless of the compound's source or method of preparation.
2. To determine the mass percent of an element in a compound, determine the totally mass contributed from the individual element and then divide it by the total mass of the ENTIRE compound.

Guided Practice

1. Find the percentage composition of copper (I) sulfide.
2. As some salts crystallize from a water solution, they bind water molecules in their crystal structure. Sodium carbonate forms such a hydrate, in which 10 water molecules are present for every formula unit of sodium carbonate. Find the mass percentage of water in sodium carbonate decahydrate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \bullet 10 \mathrm{H}_{2} \mathrm{O}$, which has a molar mass of $286.14 \mathrm{~g} / \mathrm{mol}$.
$m m$ of
 whole $\times 180=$

Independent Practice

1-3. Calculate the percentage of sodium nitrate.

1. What is the percentage by mass of sodium?
2. What is the percentage by mass of nitrogen?
3. What is the percentage by mass of oxygen?
4. What is the mass percentage of water in the hydrate $\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}$?

$\overline{\mathrm{CuSO}_{4}-5 \mathrm{H}_{2} \mathrm{O}} \times 10 \mathrm{O}$

$5 \mathrm{H}_{2} \mathrm{O}$

36.06%

$5-6$. Zinc chloride is 52.02% chlorine by mass.
5. What mass of chlorine is contained in 80.3 g of zinc chloride?
6. How many moles of chlorine is this?

$$
80,3 \times .5202=41.77 \mathrm{~g} \times
$$

