Acids and Bases

Independent Practice

$\mathbf{1 0 - 1 2}$. Determine the hydroxide and hydronium ion concentrations in a solution that is made from 0.0040 g of sodium hydroxide, a strong base, dissolved in water to make a final solution volume of 0.50L.
10. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]$ for the solution.
11. Calculate the $\left[\mathrm{OH}^{1-}\right]$ for the solution. 2×15^{-4}
12. Is the solution acidic (A) or bast (B):

13-15. Determine the hydrogen and hydronium ion concentrations in a solution that is $7.2 \times 10^{-4} \mathrm{M} \mathrm{HCl}$, a strong acid.
13. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]$ for the solution.

14. Calculate the $\left[\mathrm{OH}^{-1}\right]$ for the solution. $139 \times 10^{-1 /}$
15. Is the solution acidic (A) or basic (B)?

16-18. An aqueous solution of $\mathrm{Al}(\mathrm{OH})_{3}$, a strong base, has a $\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]$ concentration of $1.3 \times 10^{-11} \mathrm{M}$.
16. Calculate the $\left[\mathrm{OH}^{1-}\right]$ for the solution. $7,64 \times 10^{-4}$
17. What is the molarity of the solution? $2=56 \times 10^{-4}$

