

Independent Practice

10-12. Determine the hydroxide and hydronium ion concentrations in a solution that is made from 0.0040g of sodium hydroxide, a strong base, dissolved in water to make a final solution volume of 0.50L.

10. Calculate the $[H_3O^{1+}]$ for the solution.

11. Calculate the [OH¹-] for the solution. 2 × 10

12. Is the solution acidic (A) or basic (B)?

13-15. Determine the hydrogen and hydronium ion concentrations in a solution that is 7.2x10-4M HCl, a strong acid.

13. Calculate the $[H_3O^{1+}]$ for the solution. 7.2×10^{-4}

14. Calculate the [OH¹-] for the solution.
15. Is the solution acidic (A) or basic (B)?

16-18. An aqueous solution of Al(OH)₃, a strong base, has a $[H_3O^{1+}]$ concentration of 1.3×10^{-11} M.

16. Calculate the $[OH^{1-}]$ for the solution. 7.64 ×10⁻⁴
17. What is the molarity of the solution? 1.56 ×10⁻⁴
18. Is the solution acidic (A) or basic (B)

 $AI(OH)_2 \rightarrow AI' + 3OH$