Guided/Independent Practice

1-9 Directions: Determine each of the following as being true of acidic (A), basic (B), or neutral (C) solutions at
$25^{\circ} \mathrm{C}$.

1. $\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]=2.00 \times 10^{-4} \mathrm{M}$ A
2. $\left[\mathrm{OH}^{1-}\right]=7.00 \times 10^{-11} \mathrm{M} \mathrm{A}$
3. $\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]=4.30 \times 10^{-10} \mathrm{MB}$
4. $\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]=\left[\mathrm{OH}^{1-}\right]$
N
5. $\mathrm{pH}=13.0 \Omega 3$
6. $\left[\mathrm{OH}^{1}\right]=9.80 \times 10^{-7} \mathrm{M} \quad$ A
7. $\mathrm{pH}=3.00$
8. $\mathrm{pOH}=9.00 \quad$ A
9. $\mathrm{pOH}=5.00$

10-13. Determine the pH and pOH of the following strong acid solutions.

10. $3.41 \times 10^{-2} \mathrm{M} \mathrm{HCl} \quad 12.1 .00 \times 10^{-5} \mathrm{M} \mathrm{HI}$

11. $50 \times 10^{-3} \mathrm{M} \mathrm{HNO}_{3} \quad 13.1 .00 \times 10^{-4} \mathrm{M} \mathrm{HBr}$
(10) $\mathrm{POH}=112.53$ (11) $\mathrm{PH}=3.824$ (12 $\mathrm{PH}=5,000$
$\mathrm{PH}=1.47 \quad \quad \mathrm{POH}^{2}=11.176 \quad \mathrm{POH}^{\circ}=9.000$
14-16. Determine the pH and pOH of the following strong base solution.
12. $3.75 \times 10^{-2} \mathrm{M} \mathrm{NaOH}$
13. $1.27 \times 10^{-3} \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$
14. $1.00 \times 10^{-4} \mathrm{M} \mathrm{LiOH}$ $\mathrm{PO} \mathrm{H}=10.000$
(14)
$p^{\text {DH }}=1.426$
(is) $p H=11.405$

17-19. Determine the hydrogen and hydroxide ion concentrations in a solution that is $1.57 \times 10^{-4} \mathrm{M} \mathrm{HCl}$.
17. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]$ concentration.
18. Calculate the $\left[\mathrm{OH}^{1-}\right]$ concentration.
19. Is the solution acidic(A)gr basic (B)? $6,369 \times 10^{-1 /}$

20-22. Determine the hydrogen and hydroxide ion concentrations in a solution that is $1.00 \times 10^{-4} \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$.
20. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{++}\right]$concentration.
5×10^{-4}
2×10^{-4}
21. Calculate the $\left[\mathrm{OH}^{-1}\right]$ concentration. 2×10^{-4}
22. Is the solution acidic(A)or basic (D)?

23-25. Determine the hydrogen and hydroxide ion concentration in a solution that is $5 \times 10^{-3} \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3}$.
23. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]$ concentration.
24. Calculate the $\left[\mathrm{OH}^{1-}\right]$ concentration.
25. Is the solution acid $\mathrm{C}(\mathrm{A})$ or basic (B)?

26-30. A nitric acid solution (a strong acid) is found to have a pH of 2.70. Determine each of the following: 26. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{1+}\right]$ concentration.

$$
\overbrace{}^{-P} \mathrm{PH}^{+}] \cdot 002
$$

27. Calculate the [OH^{1-}] concentration.

$$
5 \times 10^{-12}
$$

28. Is the solution acidic $(\mathrm{A}) \mathrm{o}$ basic(B$)$?

29. Calculate then number of moles of HNO_{3} required to prepare 5.50 L of this solution.
30. The mass of the moles of HNO_{3} in the solution from question \#29.

$$
011 \mathrm{~mol} 1+N O, \times \frac{63.012_{9}}{1 m_{01}}=093 \mathrm{y}^{11 \mathrm{NO}}
$$

31. A solution of sulfuric acid has a pH of 3.2. Calculate the concentration of sulfuric acid.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}\left[3.15 \times 10^{-4} \mathrm{MH} \mathrm{H}_{2} \mathrm{O}\right. \\
& 10^{-\mathrm{PH}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{H}^{+}\right]=6.31 \times 10^{-4}=
\end{aligned}
$$

32. A solution of aluminum hydroxide has $\mathrm{a}(\mathrm{OH}$ of 10.3 . Calculate the concentration of alumenemydroxide.

