Unit 12 Part 14: EZPZ Review

This is called an "E-Z-P-Z" Review. This review only hits the basic and foundation of the unit. The extended and more difficult questions were on your QUEST homework so look there! This is just to make sure you at least know the **basics**!

Part 1: Temperature and Heat

- 1) One form of energy can be converted to another. Here are some examples:
 - a) A flaming hot Cheeto is burned in chemistry lab. As <u>hemical</u> energy is converted to <u>hermal</u> energy.
 b) A space heater is plugged into an electrical outlet and used to warm up a room. As <u>electivical</u> energy is converted to <u>hermal</u> energy.
 c) The process of photosynthesis is used to make a tasty carrot. As <u>manual</u> energy is converted to <u>chemical</u> energy.
- 2) Complete the chart below:

	ΔΗ	Heat	Type of Reaction
	(+ or -?)	(Absorbed or released?)	Endothermic or Exothermic?
energy + 2 H_2S + $SO_2 \rightarrow 3S$ + 2 H_2O	+	A	Endo
$N_2(g)$ + 3 $H_2(g)$ \rightarrow 2 NH_3 + energy	_	Ŕ	Exo
Ice freezing	-	R	Exd
Dry ice sublimation	+	A	Endo

Part 2: mCAT and Calorimetry

1) A 1.5 g iron nail is heated to 95.0 °C and placed into a beaker of water. Calculate the heat gained by the water if the final equilibrium temperature is 57.8 °C. The specific heat capacity of iron = 0.449 J/g°C, and the specific heat capacity of water = 4.18 J/g°C.

m = -25.1 $9_{w} = [25.]$

2) A 32.5 g cube of aluminum initially at 45.8 °C is submerged into 105.3 g of water at 15.4 °C. What is the final temperature of both substances at thermal equilibrium? The specific heat of aluminum is 0.903 J/g°C.

3) A block of copper of unknown mass has an initial temperature of 65.4 °C. The copper is immersed in a beaker containing 95.7 g of water at 22.7 °C. When the two substances reach thermal equilibrium, the final temperature is 24.2 °C. What is the mass of the copper block? (C of copper is 0.385 J/g°C)

Part 3: Enthalpy

For each reaction:

- a) Use the heats of formation in the chart below to determine the heat of each reaction.
- b) Write the thermochemical equation.

Name	Formula	ΔH° f	Name	Formula	ΔH° f
Calcium oxide	CaO	-634.9 kJ/mole	Carbon monoxide	CO	-110.5 kJ/mole
Hydrochloric acid	HCI	-167.2 kJ/mole	Iron (II) oxide	FeO	-272.0 kJ/mole
Iron (III) oxide	Fe_2O_3	-824.2 kJ/mole	Hydrobromic acid	HBr	-36.4 kJ/mole
Carbon dioxide	CO ₂	-393.5 kJ/mole	Ethane	C_2H_6	-83.8 kJ/mole
Calcium carbonate	CaCO ₃	-1207.6 kJ/mole	Water (liquid)	H_2O	-285.8 kJ/mole

Cally->CaltQ

1) Calcium carbonate decomposes to calcium oxide and carbon dioxide.

a) 179.2

 $179.2 + Calog \rightarrow CaO + Coz$ b)

- 2) $2 C_2 H_6(g) + 7 O_2(g) \rightarrow 4 CO_2(g) + 6 H_2 O(\ell)$ a) -1 1 4 9 5 2 4 J
 - » 2C1H6+702 -> 4002 + 6H20+11695

Part 4: Energy Stoich

1) The main engines of the space shuttle burn hydrogen to produce water. How much heat (in kJ) is associated with this process if 1.32×10^5 kg of liquid H₂ is burned?

$$2 H_2(\ell) + O_2(\ell) \rightarrow 2 H_2O(\ell)$$
 $\Delta H^{\circ}_{rxn} = -571.6 \text{ kJ}$
 $-3.77 \times 10^{10} \text{ KJ}$

a) An LP gas tank in a home barbeque contains 13.2 kg of propane, C₃H₈. Calculate the heat (in kJ) associated with the complete combustion of all of the propane in the tank.

$$C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g)$$
 $\Delta H^{\circ}_{rxn} = -2044 \text{ kJ}$
- $6/2,000 \text{ kJ}$

Part 5: Heating Curves

Determine the amount of heat gained (+) or lost (-) during each of the following changes.

Molor Heats of Fusion (H_f)				
aluminum 10.8 kJ/mol				
titanium 18.8 kJ/mol				
water	6.02 kJ/mol			

Molar Heats of Vaporization (H_{ν})				
aluminum 284 kJ/mol				
benzene	30.8 kJ/mol			
water	40.7 kJ/mol			

Specific Heat Capacity (C)				
aluminum	0.903 J/g·℃			
water (solid)	2.06 J∕g·°C			
water (liquid)	4.18 J∕g·°C			
water (gas)	2.02 J/g·°C			

1) Melting 55.8 g of Ti at 167 °C. (The melting point of titanium is 1677 °C)

2) Heating 6.9 g of solid aluminum from 32 °C to 320. °C.

3) Converting 45.0 g of water at 20.0 $^{\circ}$ C to steam at 115 $^{\circ}$ C.

	Part (6 : Bon	d Ener	gy
--	--------	----------------	--------	----

Thermochemical Equation	Endo- or Exothermic	Which is greater in energy: Bonds Broken or Bonds Formed
A + B + 127 kJ \rightarrow C	Endo	
2 NO (g) + O ₂ (g) → 2 NO ₂ (g) + energy	Exo	Ľ

Part 7: Hess's Law

1) Use Hess's Law to determine ΔH for the following target reaction.

a)	$2 \operatorname{NOCI}(g) \rightarrow \operatorname{N}_{2}(g) + \operatorname{O}_{2}(g) + \operatorname{CI}_{2}(g)$	$\Delta H = ?$
-	$\frac{1}{2}$ N ₂ (g) + $\frac{1}{2}$ O ₂ (g) \rightarrow NO (g)	ΔH =90.3 kJ 🛪 🚄
	NO (g) + $\frac{1}{2}$ Cl ₂ (g) \rightarrow NOCI (g)	$\Delta H = \mathbf{J} - 38.6 \text{kJ} \times \mathbf{Z}$
		-103.45
b)	$N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$	ΔH = ?
	$N_2(g) + O_2(g) \rightarrow 2 \text{ NO}(g)$	ΔH = 180 kJ
	$2 \operatorname{NO}(g) + \operatorname{O}_2(g) \rightarrow 2 \operatorname{NO}_2(g)$	$\Delta H = -112 \text{ kJ}$
		68 kJ
c)	$2 \text{ N}_2 + 6 \text{ H}_2\text{O} \rightarrow 3 \text{ O}_2 + 4 \text{ NH}_3$	ΔH = ?
_	$NH_{3}(g) \rightarrow \frac{1}{2}N_{2}(g) + \frac{3}{2}H_{2}(g)$	ΔH = 46 kJ
	2 H ₂ (g)+O ₂ (g)→2 H ₂ O (g)	ΔH = – 484 kJ
		1268KJ

Part 8: Mixed Practice

For Problems 1) and 2), determine:

- a) Whether the reaction is endothermic or exothermic.
- b) Whether energy absorbed or released.

3) For the following reaction:

$$C_4H_{10}(g) + 13/2 O_2(g) \rightarrow 4 CO_2(g) + 5 H_2O(g)$$
 $\Delta H_{rxn} = -2658 kJ$

a) What mass of butane in grams is necessary to produce 1.5×10^3 kJ of heat?

b) What mass of CO_2 is produced? $QQ_2 Q_3 Q_4$ $QQ_3 Q_4$ Q_4 4) If 5750 J of energy is added to 455g piece of glass, what was the temperature change of the glass? The specific heat of glass is 0.50 J/ g° C.

Determine the amount of heat gained (+) or lost (-) during each of the changes in problems 5) - 8.

Molar Heats	of Fusion (H _f)	Molar Heats of	Vaporization (H_v)	Spec
aluminum	10.8 kJ/mol	aluminum	284 kJ/mol	alumin
titanium	18.8 kJ/mol	benzene	30.8 kJ/mol	water (s
water	6.02 kJ/mol	water	40.7 kJ/mol	water (lio

Specific Heat Capacity (C)				
aluminum	0.903J/g·℃			
water (solid)	2.06 J∕g·°C			
water (liquid)	4.18 J∕g·°C			
water (gas)	2.02 J/g·℃			

5) Condensing 14.2 g of water at 100°C.

6) Melting 27.3 g of Al at 660 °C. (The melting point of aluminum is 600 °C.)

7) 220.0 g of ice at -35.0° C is converted to liquid water at 50.0° C.

8) 5.00 g of steam at 155°C is converted to liquid water at 100.0°C.

9) Given the reaction

$$Ba(OH)_2 \cdot 8H_2O + NH_4CI + 164 \text{ kJ} \rightarrow BaCI_2 + 2 \text{ NH}_3 + 10 \text{ H}_2O$$

a) How much heat is absorbed or released if 223 g of ammonium chloride react completely with barium oxide octahydrate?

b) When this reaction occurs in a calorimeter, what will the temperature change be? (Assume the total mass of the calorimeter is 420. g and the specific heat of solution is $4.18 \text{ J/g}^{\circ}\text{C}$).

For Problems 10) and 11):

- a) Use the heats of formation in the chart below to determine the heat of each reaction.
- b) Write the thermochemical equation.

Name	Formula	ΔH° f	Name	Formula	ΔH° _f
Calcium oxide	CaO	-634.9 kJ/mole	Carbon monoxide	CO	-110.5 kJ/mole
Hydrochloric acid	HCI	-167.2 kJ/mole	Iron (II) oxide	FeO	-272.0 kJ/mole
Iron (III) oxide	Fe_2O_3	-824.2 kJ/mole	Hydrobromic acid	HBr	-36.4 kJ/mole
Carbon dioxide	CO ₂	-393.5 kJ/mole	Ethane	C_2H_6	-83.8 kJ/mole
Calcium carbonate	CaCO ₃	-1207.6 kJ/mole	Water (liquid)	H_2O	-285.8 kJ/mole

10) Hydrobromic acid reacts with chlorine.

$$\begin{array}{l} a) & -2bl \cdot bkJ \\ b) & 2HBr + Cl_{2} \rightarrow 2HCl + Br_{2}^{2bl} \\ Factor (b) + 2CO(d) \rightarrow 2Fo(b) + 2CO(d) \\ \end{array}$$

b)

Fe₂O₃(s) + 3 CO(g)
$$\rightarrow$$
 2 Fe(s) + 3 CO₂(g)
a) $1336 \mu C$