Unit 12 Part 14: EZPZ Review

This is called an "E-Z-P-Z" Review. This review only hits the basic and foundation of the unit. The extended and more difficult questions were on your QUEST homework so look there! :) This is just to make sure you at least know the basics!

Part 1: Temperature and Heat

1) One form of energy can be converted to another. Here are some examples:
a) A flaming hot Cheeto is burned in chemistry lab.
As Cranks) energy is converted to \qquad energy.
b) A space heater is plugged into an electrical outlet and used to warm up a room.
 energy is converted to \qquad 1 energy.
c) The process of photosynthesis is used to make a tasty carrot.

As radiant energy is converted to \qquad energy.
2) Complete the chart below:

Part 2: $\mathrm{mC} \Delta \mathrm{T}$ and Calorimetry

1) A 1.5 g iron nail is heated to $95.0^{\circ} \mathrm{C}$ and placed into a beaker of water. Calculate the heat gained by the water if the final equilibrium temperature is $57.8^{\circ} \mathrm{C}$. The specific heat capacity of iron $=0.449 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$, and the specific heat capacity of water $=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.

2) A 32.5 g cube of aluminum initially at $45.8^{\circ} \mathrm{C}$ is submerged into 105.3 g of water at $15.4^{\circ} \mathrm{C}$. What is the final temperature of both substances at thermal equilibrium? The specific heat of aluminum is $0.903 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.
3) A block of copper of unknown mass has an initial temperature of $65.4^{\circ} \mathrm{C}$. The copper is immersed in a beaker containing 95.7 g of water at $22.7^{\circ} \mathrm{C}$. When the two substances reach thermal equilibrium, the final temperature is $24.2^{\circ} \mathrm{C}$. What is the mass of the copper block? (of is $0.385 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$)

Part 3: Enthalpy
For each reaction:
a) Use the heats of formation in the chart below to determine the heat of each reaction.
b) Write the thermochemical equation.

Name	Formula	$\Delta \mathbf{H}_{\mathrm{f}}$	Name	Formula	$\Delta \mathrm{H}^{\circ}{ }_{\mathrm{f}}$
Calcium oxide	CaO	$-634.9 \mathrm{~kJ} / \mathrm{mole}$	Carbon monoxide	CO	$-110.5 \mathrm{~kJ} / \mathrm{mole}$
Hydrochloric acid	HCl	$-167.2 \mathrm{~kJ} / \mathrm{mole}$	Iron (II) oxide	FeO	$-272.0 \mathrm{~kJ} / \mathrm{mole}$
Iron (III) oxide	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$-824.2 \mathrm{~kJ} / \mathrm{mole}$	Hydrobromic acid	HBr	$-36.4 \mathrm{~kJ} / \mathrm{mole}$
Carbon dioxide	CO_{2}	$-393.5 \mathrm{~kJ} / \mathrm{mole}$	Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	$-83.8 \mathrm{~kJ} / \mathrm{mole}$
Calcium carbonate	CaCO_{3}	$-1207.6 \mathrm{~kJ} / \mathrm{mole}$	Water (liquid)	$\mathrm{H}_{2} \mathrm{O}$	$-285.8 \mathrm{~kJ} / \mathrm{mole}$

1) Calcium carbonate decomposes to calcium oxide and carbon dioxide.
a)

$$
179.2
$$

b) $179.2+\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}_{\mathrm{C}}+\mathrm{CO}_{2}$
2) $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
2) -11695.2 kJ
${ }^{\square} 2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}+1165$

Part 4: Energy Stoich

1) The main engines of the space shuttle burn hydrogen to produce water. How much heat (in kJ) is associated with this process if $1.32 \times 10^{5} \mathrm{~kg}$ of liquid H_{2} is burned?

$$
\xrightarrow{2 H_{2}(l)+O_{2}(t) \rightarrow 2 H_{0}(t)} \quad \Delta H^{\circ r_{m \times n}=-57.6 \mathrm{~kJ}}
$$

a) An LP gas tank in a home barbeque contains 13.2 kg of propane, $\mathrm{C}_{3} \mathrm{H}_{8}$. Calculate the heat (in kJ) associated with the complete combustion of all of the propane in the tank.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}^{\mathrm{o}}=-2044 \mathrm{~kJ}
$$

Part 5: Heating Curves

Det rmine the amount of heat gained (+) or lost (-) during each of the following changes.

Moqr Heats of Fusion $\left(\mathrm{H}_{\mathrm{f}}\right)$	
aluminum	$10.8 \mathrm{~kJ} / \mathrm{mol}$
titanium	$18.8 \mathrm{~kJ} / \mathrm{mol}$
water	$4.02 \mathrm{~kJ} / \mathrm{mol}$

Molar Heats of Vaporization (H_{v})	
aluminum	$284 \mathrm{~kJ} / \mathrm{mol}$
benzene	$30.8 \mathrm{~kJ} / \mathrm{mol}$
water	$40.7 \mathrm{~kJ} / \mathrm{mol}$

Specific Heat Capacity (C)	
aluminum	$0.903 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
water (sotid)	$2.06 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
water (liquid)	$4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
water (gas)	$2.02 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$

1) Melting 55.8 g of Ti at $167{ }^{\circ} \mathrm{C}$. (The melting point of titanium is 1677
2) Heating 6.9 g of solid aluminum from $32^{\circ} \mathrm{C}$ to $\beta 20 .{ }^{\circ} \mathrm{C}$.
3) Converting 45.0 g of wate at $20.0^{\circ} \mathrm{C}$ to steam at $115^{\circ} \mathrm{C}$.

Part 6: Bond Energy

Thermochemical Equation	Endo- or Exothermic	Whichis greater in Energy: Bonds Brok\&n or Bonds Formed
$\mathrm{A}+\mathrm{B}+127 \mathrm{~kJ} \rightarrow \mathrm{C}$		
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+$ energy		

Part 7: Hess's Law

1) Use Hess's Law to determine ΔH for the following target reaction.
a)

$$
\begin{array}{cl}
2 \mathrm{NOCl}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) & \Delta H=? \\
\hline 1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}(\mathrm{~g}) & \Delta H=90.3 \mathrm{~kJ} \times 2 \\
\mathrm{NO}(\mathrm{~g})+1 / 2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NOCl}(\mathrm{~g}) & \Delta H=1-38.6 \mathrm{~kJ} \times 2
\end{array}
$$

b)

$$
\begin{array}{cl}
\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) & \Delta H=? \\
\hline \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g}) & \Delta H=180 \mathrm{~kJ} \\
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) & \Delta H=-112 \mathrm{~kJ} \\
\hline \mathbf{~ K J J J}
\end{array}
$$

c)

$$
\begin{array}{cl}
2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{O}_{2}+4 \mathrm{NH}_{3} & \Delta H=? \\
\hline \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=46 \mathrm{~kJ} \\
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=-484 \mathrm{~kJ} \\
& 1268 \mathrm{JJ}
\end{array}
$$

Part 8: Mixed Practice

For Problems 1) and 2), determine:
a) Whether the reaction is endothermic or exothermic.
b) Whether energy absorbed or released.
1)

a) $\square \mathrm{B}$
b) $+\infty$
2)

a) $E \times 0$
b) -10055
3) For the following reaction:

$$
\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}=-2658 \mathrm{~kJ}
$$

a) What mass of butane in grams is necessary to produce $1.5 \times 10^{3} \mathrm{~kJ}$ of heat?

b) What mass of CO_{2} is produced?

4) If 5750 J of energy is added to 455 g piece of glass, what was the temperature change of the glass? The specific heat of glass is $0.50 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$.

Determine the amount of heat gained (+) or lost (-) during each of the changes in problems 5) - 8).

Molar Heats of Fusion (H_{f})		Molar Heats of Vaporization (H_{v})		Specific Heat Capacity (C)	
aluminum	$10.8 \mathrm{~kJ} / \mathrm{mol}$	aluminum	$284 \mathrm{~kJ} / \mathrm{mol}$	alynhinum	$0.903 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
titanium	18.8 k Mm	benzene	$30.8 \mathrm{~kJ} / \mathrm{mol}$	water (solid)	$2.06 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
water	$6.02 \mathrm{~kJ} / \mathrm{m}$	water	$40.7 \mathrm{~kJ} / \mathrm{mol}$	water (liquid)	$4.18 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$
				water (gas)	$2.02 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$

5) Condensing 14.2 g of water at $100^{\circ} \mathrm{C}$.
6) Melting 27.3 g of Al at $660^{\circ} \mathrm{C}$. (The melting point of aluminum is $60^{\circ} \mathrm{C}$.)
7) 220.0 of ice at $-35.0^{\circ} \mathrm{C}$ is converted to liquid water at $50.0^{\circ} \mathrm{C}$.
8) 5.00 g of steamat $55^{\circ} \mathrm{C}$ is converted to liquid waterat $100.0^{\circ} \mathrm{C}$.
9) Given the reaction

$$
\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{4} \mathrm{Cl}+164 \mathrm{~kJ} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{NH}_{3}+10 \mathrm{H}_{2} \mathrm{O}
$$

a) How much heat is absorbed or released if 223 g of ammonium chloride react completely with barium oxide octahydrate?

b) When this reaction occurs in a calorimeter, what will the temperature change be? (Assume the total mass of the calorimeter is $420 . g$ and the specific heat of solutionis $4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$).

For Problems 10) and 11):
a) Use the heats of formation in the chart below to determine the heat of each reaction.
b) Write the thermochemical equation.

Name	Formula	$\boldsymbol{\Delta \mathbf { H } ^ { \circ }}{ }_{\mathrm{f}}$	Name	Formula	$\boldsymbol{\Delta \mathbf { H } ^ { \circ }}{ }_{\mathbf{f}}$
Calcium oxide	CaO	$-634.9 \mathrm{~kJ} / \mathrm{mole}$	Carbon monoxide	CO	$-110.5 \mathrm{~kJ} / \mathrm{mole}$
Hydrochloric acid	HCl	$-167.2 \mathrm{~kJ} / \mathrm{mole}$	Iron (II) oxide	FeO	$-272.0 \mathrm{~kJ} / \mathrm{mole}$
Iron (III) oxide	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$-824.2 \mathrm{~kJ} / \mathrm{mole}$	Hydrobromic acid	HBr	$-36.4 \mathrm{~kJ} / \mathrm{mole}$
Carbon dioxide	CO_{2}	$-393.5 \mathrm{~kJ} / \mathrm{mole}$	Ethane	$\mathrm{C}_{2} \mathrm{H}_{6}$	$-83.8 \mathrm{~kJ} / \mathrm{mole}$
Calcium carbonate	CaCO_{3}	$-1207.6 \mathrm{~kJ} / \mathrm{mole}$	Water (liquid)	$\mathrm{H}_{2} \mathrm{O}$	$-285.8 \mathrm{~kJ} / \mathrm{mole}$

10) Hydrobromic acid reacts with chlorine.
11) -261.6 kJ
-2 $\quad 2 \mathrm{HBr}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}+\mathrm{Br}_{2}^{2}$
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{CO}_{2}(\mathrm{~g})$
a) 2336.2
b)
