

Content Objectives:

I can explain the movement of electrons within atoms as they absorb or emit different amounts of energy.

Criteria for Success:

I can define and explain ground state and excited state.

I can tell the difference between an atom in the ground state and an excited state using the electron configuration. I can explain the concept of emission spectra.

Notes

Absorption and Emission of Energy by Electrons

A. Atoms will exist in two states in relation to____

- **1.** The lowest potential energy state of an atom is its_____
- **2.** A state in which an atom has a higher potential energy than it does in its ground state is an_____.

B. Electrons can move to a higher energy orbital by gaining a specific amount, or______, of______,

C. When electrons fall back from the excited state a specific amount or, a ______, of ______, of ______, is released equal to the energy difference between the two orbitals.

D. The______ of an element is the relative intensity of each frequency of electromagnetic radiation emitted by the atom as the atom's electrons return from the excited state to the ground state.

Independent Practice

- 1 In a calcium atom in the ground state, the electrons that possess the least amount of energy are located in the
 - first electron shell
 - R second electron shell
 - С third electron shell
 - D fourth electron shell
- 2 An atom of oxygen is in an excited state. When an electron in this atom moves from the third shell to the second shell, energy is
 - emitted by the nucleus
 - Ř emitted by the electron
 - Ľ absorbed by the nucleus
 - absorbed by the electron D
- 3 As an electron in an atom moves from the ground state to the excited state, the electron **A** gains energy as it moves to a higher
 - energy level
 - gains energy as it moves to a В lower energy level
 - С loses energy as it moves to a higher energy level
 - D loses energy as it moves to a lower energy level
- 4 A bright-line spectrum of an atom is caused when electrons Α
 - release energy and jump to a higher energy level release energy and fall to a
 - lower energy level
 - С absorb energy and jump to a higher energy level
 - absorb energy and fall to a D lower energy level
- 5 Which electron configuration represents an atom in an excited state?
 - 1s²2s²2p⁶3p¹ A

B

- В 1s²2s²2p⁶3s²3p¹
- С 1s²2s²2p⁶3s²3p²
- $1s^22s^22p^63s^2$ D
- How does the ground state electron

- configuration of the hydrogen atom differ from that of a ground state helium atom?
- Hydrogen has one electron in a Α higher energy level.
- Hydrogen has two electrons В in a lower energy level. С

ne Electron Cloud

- Hydrogen contains a halffilled orbital.
- Hydrogen contains a completely D filled orbital.
- 7 Which is an electron configuration of a fluorine atom in the excited state?
 - $1s^22s^22p^4$ Α B C
 - $1s^{2}2s^{2}2p^{5}$ 1s²2s²2p⁴3s¹
 - $1s^22s^22p^53s^1$

d block

Atransition element in the ground state 8 could have an electron configuration of 1s²2s²2p⁶3s²3p⁶4s² A B $1s^22s^22p^63s^23p^64s^23d^5$

- C D
- $1s^22s^22p^63s^23p^64s^23d^{10}4p^5$ $1s^22s^22p^63s^23p^64s^23d^{10}4p^6$
- 9 Which electron configuration represents a potassium atom in the excited state?
 - 1s²2s²2p⁶3s²3p³ A
 - 1s²2s²2p⁶3s¹3p⁴
 - D

B

- 1s²2s²2p⁶3s²3p⁶4s¹ 1s²2s²2p⁶3s²3p⁵4s²
- 10 Which electron configuration represents an atom in an excited state? $1s^{2}2s^{2}2p^{2}$
 - A
- $1s^{2}2s^{2}2p^{1}$ $1s^22s^22p^53s^2$ $1s^{2}2s^{2}2p^{6}3s$

6